
Deep Compressive Offloading: Speeding Up Neural Network
Inference by Trading Edge Computation for Network Latency

Shuochao Yao1, Jinyang Li, Dongxin Liu, Tianshi Wang,
Shengzhong Liu, Huajie Shao, Tarek Abdelzaher

1George Mason University, University of Illinois at Urbana-Champaign
1shuochao@gmu.edu, {jinyang7, dongxin3, tianshi3, sl29, hshao5, sl29, zaher}@illinois.edu

ABSTRACT
With recent advances, neural networks have become a crucial build-
ing block in intelligent IoT systems and sensing applications. How-
ever, the excessive computational demand remains a serious im-
pediment to their deployments on low-end IoT devices. With the
emergence of edge computing, offloading grows into a promising
technique to circumvent end-device limitations. However, transfer-
ring data between local and edge devices takes up a large proportion
of time in existing offloading frameworks, creating a bottleneck for
low-latency intelligent services. In this work, we propose a gen-
eral framework, called deep compressive offloading. By integrating
compressive sensing theory and deep learning, our framework can
encode data for offloading into tiny sizes with negligible overhead
on local devices and decode the data on the edge server, while of-
fering theoretical guarantees on perfect reconstruction and lossless
inference. By trading edge computing resources for data transmis-
sion time, our design can significantly reduce offloading latency
with almost no accuracy loss. We build a deep compressive offload-
ing system to serve state-of-the-art computer vision and speech
recognition services. With comprehensive evaluations, our system
can consistently reduce end-to-end latency by 2× to 4× with 1% ac-
curacy loss, compared to state-of-the-art neural network offloading
systems. In conditions of limited network bandwidth or intensive
background traffic, our system can further speed up the neural
network inference by up to 35× 1.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile
computing; • Computing methodologies → Machine learn-
ing; • Computer systems organization → Embedded and
cyber-physical systems.

KEYWORDS
Deep Learning, Edge Computing, Offloading, Compressive Sensing,
Compressive Offloading, Internet of Things

1Code is available on https://github.com/CPS-AI/Deep-Compressive-Offloading

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’20, November 16–19, 2020, Virtual Event, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7590-0/20/11. . . $15.00
https://doi.org/10.1145/3384419.3430898

ACM Reference Format:
Shuochao Yao1, Jinyang Li, Dongxin Liu, Tianshi Wang, and Shengzhong
Liu, Huajie Shao, Tarek Abdelzaher. 2020. Deep Compressive Offloading:
Speeding Up Neural Network Inference by Trading Edge Computation
for Network Latency. In The 18th ACM Conference on Embedded Networked
Sensor Systems (SenSys ’20), November 16–19, 2020, Virtual Event, Japan.ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3384419.3430898

1 INTRODUCTION
Future sensing systems will be smarter and more user-friendly.
They will perceive the physical environment, understand human
context, and interact with end-users in a human-like fashion. Daily
objects will be capable of leveraging sensor data to perform complex
estimation and recognition tasks, such as recognizing visual inputs,
understanding voice commands, tracking objects, and interpreting
human actions. This raises important research questions on how
to endow low-end embedded (usually mobile) devices with the
appearance of intelligence despite their resource limitations.

Thanks to recent advances in deep learning, state-of-the-art
neural networks achieved significant accuracy improvements in
a broad spectrum of areas, including computer vision [24, 40],
speech analysis [4, 21], language processing [6, 16], and mobile
sensing [46, 47, 49]. However, high execution time and energy
consumption remain the major barriers to large-scale deployment
of deep learning services on lower-end embedded and/or mobile
sensing devices. Despite recent progress in compressing neural
networks for reducing resource demands [10, 22, 48, 50], the com-
putational requirements of deep learning models remain prohibitive
for lots of low-end devices.

Offloading data to a more computationally capable node is a po-
tential solution to facilitate ubiquitous deep neural network services
on otherwise computationally-limited devices. By partitioning neu-
ral network models and transferring inputs or intermediate data to
nearby (edge) servers, inference can be entirely or partly offloaded,
which eases the burden on local end-devices [17, 30]. However,
transferring data between the mobile/embedded sensing device and
the edge server takes up a long time in most existing offloading
pipelines, creating a need for optimization to fit latency-sensitive
applications. This challenge motivated much recent research.

One potential system solution is to decide the optimal offloading
point in a neural network based on current computing resources
and network conditions [17, 30]. The intuition here is that some
intermediate layers in the neural network may have smaller sizes.
Selecting these layers as offloading points can reduce data transmis-
sion time. However, the intermediate data sizes of the first several
layers are still large. In practice, we have to run a considerable
portion of the model locally to reach a bandwidth-efficient offload-
ing point, which diminishes the offloading benefit. Another design

https://github.com/CPS-AI/Deep-Compressive-Offloading
https://doi.org/10.1145/3384419.3430898
https://doi.org/10.1145/3384419.3430898

SenSys ’20, November 16–19, 2020, Virtual Event, Japan S. Yao et al.

settles on an inferior but efficient local model to cut down the fre-
quency of offloading requests [39]. This method, however, trades
inference accuracy for speed-up, resulting in up to a 10% accuracy
loss. There are also application-specific systems that control the
overall latency carefully [34]. Unfortunately, these system designs
are integrated with the application and are not directly applicable
across application domains.

An elegant category of solutions that come closest to ours lever-
ages learning-based data compression techniques, such as auto-
encoder structures [3, 35], to compress data locally for offloading
and then reconstruct it on the server side. These techniques can
compress data features into tiny sizes while attaining a high-fidelity
reconstruction. However, they result in a symmetric split of process-
ing burden among the encoder and decoder sides. This is suboptimal
due to the inherent asymmetry in computing resources and power
among the end-device and edge server sides. In contrast, the main
contribution of this paper lies in an asymmetric encoder/decoder
framework that incurs much less overhead on the (resource-limited)
end-device, putting most of the burden on the server side. As shown
in the evaluation, this asymmetry results in significantly improved
end-to-end latency.

We call the general framework proposed in this paper, Deep
Compressive Offloading. It substantially reduces offloading latency,
while contributing only a negligible computational overhead on
local end-devices, and incurring almost no degradation in inference
accuracy. More specifically, by taking the computational capabilities
of local and edge devices into consideration, we design an imbal-
anced “autoencoder" with a lightweight encoder to compress data
into tiny sizes on a local device and a relatively complex decoder to
reconstruct the data on the edge server, while offering a recovery
guarantee. One potential choice of the imbalanced autoencoder is
to apply the well-known and theoretically grounded compressive
sensing [7, 13] ideas. If the data are sparse in a domain, compressive
sensing can encode (i.e., compress) the data with a simple measure
matrix and decode (i.e., reconstruct) the data with an optimization-
based method. Unfortunately, unmodified compressive sensing has
two significant drawbacks, making it an inappropriate choice for
our imbalanced encoder-decoder design.

First, compressive sensing requires prior knowledge of the trans-
formation that can sparsify the target data. For those well-studied
data types, such as images or voice, we can obtain prior knowl-
edge from related research. However, our system will offload not
only well-studied data types but also intermediate neural network
features, whose sparse properties are unknown. Second, the re-
construction of compressive sensing requires slow iterative opti-
mization methods, such as iterative soft thresholding and gradient
projection [14, 18]. Although edge servers are far more powerful
than local devices, it still takes several seconds to reconstruct a
mid-size (224 × 224 × 3) image. If we adopt traditional compres-
sive sensing recovery algorithms at the decoder, the reconstruction
process will become a new offloading bottleneck.

To overcome these two drawbacks, deep compressive offloading
replaces the optimization-based decoder with a trainable generative
neural network. Instead of relying on sparsity, a generative neu-
ral network can serve as the implicit prior constraint for decoding
data [11]. The generative neural network learns a map from the low-
dimensional data space to the targeted data distribution. Therefore,

we can reconstruct the encoded data through a single run of the
generative model and can get rid of the slow iterative algorithms,
including gradient descent [11] and iterative optimizations [14, 18].
Furthermore, traditional compressive sensing uses random mea-
surement matrices, which is known to be suboptimal [45]. Deep
compressive offloading designs the encoding part as a learnable
but lightweight single-layer convolution. It can further automati-
cally learn the optimal transformation for compressing the data for
offloading with low computational overhead on local devices.

Designing the offloading encoder and decoder as neural net-
works does not mean giving up recovery guarantees of compressive
sensing. Following the theoretical analysis of compressive sens-
ing [11, 13], deep compressive offloading imposes the Restricted
Isometry Property (RIP) and Lipschitz continuity on the encoder
and the decoder respectively, which ensures satisfaction of recovery
guarantees in our offloading system.

Compared with traditional data reconstruction and compressive
sensing problems, our system has one additional advantage: It can
leverage the fact that the goal of the decoder is no longer to perfectly
recover original data before encoding. Rather, the goal is to decode
the encoded data to achieve the best inference results. Therefore, we
can borrow additional knowledge from the original deep learning
service, using intermediate feature maps of its deep learning model
as additional supervisions to our offloading encoder and decoder
training. Notice that the proposed compressive offloading does not
require any additional changes in the original deep learning ser-
vice, including its model structure and parameters. Thus, we can
easily apply our design of deep compressive offloading as a unified
solution to a general deep learning service without domain knowl-
edge. Moreover, we can train our encoder and decoder without any
labeled data, which further simplifies the deployment in practice.

We integrate the ideas and theoretical underpinnings of deep
compressive offloading into a practical system, called DeepCOD.
The system has a performance predictor and a runtime partition
decision maker to find the optimal partition point for offloading.
DeepCOD provides a general offloading function for any deep
learning service. We implement this system on Android mobile
devices and a Linux edge server with GPUs. We choose two widely
deployed applications with corresponding state-of-the-art neural
network models to evaluate our offloading system, namely, im-
age recognition with ResNet-50 [24] on ImageNet ILSVRC2012
dataset [15], and speech recognition with Deep Speech [23] on
Librispeech dataset [38]. We deploy and evaluate DeepCOD with
the combinations of two types of mobile devices, an edge server
with two types of GPUs, and two types of wireless connections
with various additional bandwidth constraints. In all deployments,
DeepCOD consistently achieves ×2 to ×4 end-to-end offloading
latency reduction with at most 1% accuracy loss for image and
speech recognition services when compared with the state-of-the-
art offloading systems and model compression techniques for deep
neural networks [3, 30–32, 35, 48]. Under conditions of limited net-
work bandwidth or intensive background traffic, DeepCOD can
further speed up the neural network inference time by up to ×35.

In summary, we propose a general offloading technique, called
deep compressive offloading, including theoretical analysis, system
design, and implementation. From the theoretical and empirical
perspectives, deep compressive offloading can substantially speed

Deep Compressive Offloading SenSys ’20, November 16–19, 2020, Virtual Event, Japan

DeepCOD Offload Offload−AE Offload−CS JPEG Offload−Intp
0

20

40

60

1000

3000

Ti
m

e
(m

s)

Mobile Execution Time
Network Transmission Time
Edge Execution Time

(a) Decompose latency into network transmis-
sion, mobile and edge execution time.

DeepCOD Offload Offload−AE Offload−CS JPEG Offload−Intp
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Top−1 Accuracy
Top−5 Accuracy

(b) The impacts of offloading techniques on in-
ference accuracy.

10 20 60 100 400 1000 3000
65

70

75

80

85

90

95

Time (ms)

To
p−

5
A

cc
ur

ac
y

(%
)

DeepCOD
Offload
Offload−AE
Offload−AE (Compressed)
Offload−CS
JPEG
Offload−Intp
Mobile
Mobile (Compressed)

(c) Deep compressive offloading achieves
Pareto optimality (the time axis in log scale).

Figure 1: A case study of image recognition application with ResNet-50 model. Google Pixel is connected to an edge with Titan
V through 450Mbps WiFi. Images on the mobile device are offloaded to the edge server with various offloading techniques.
up edge offloading of deep learning services with almost no impact
on model inference results.
2 MOTIVATION: SYSTEM PERFORMANCE
It has been widely recognized that transferring data between mo-
bile devices and edge servers is the bottleneck in offloading deep
learning services [17, 30, 34, 39]. In this section, we start with a
practical example and empirical measurements to investigate the
challenge and opportunity of speeding up such offloading.

In this experiment, we deploy a 1000-category image recognition
service with ResNet-50 on Google Pixel phone. The mobile phone
is connected to an edge service with Nvidia Titan V GPU through a
450MbpsWiFi connection. The size of the testing images is 224×224.
We measure the end-to-end latency of image classification with
seven different inference designs, including both edge offloading
and on-device processing techniques.

On-device processing is one of the most widely adopted solu-
tions for deploying deep learning on embedded/mobile devices.
As illustrated in Figure 1c, the ResNet-50 model, denoted as “Mo-
bile", takes more than 650 ms on the mobile device. Even when we
apply the state-of-the-art system-aware compression technique,
FastDeepIoT [48], the compressed ResNet-50 model, denoted as
“Mobile (Compressed)", still takes more than 250 ms to finish a sin-
gle inference. Therefore, embedded and mobile devices naturally
call for offloading solutions to speed up neural network inference
and enable low-latency applications.

The vanilla offloading operation, denoted as “Offload" in Figure 1,
transfers input data or intermediate representations to the edge
server without additional manipulation. Based on system and net-
work profiling, the choice of offloading input image is the optimal
offloading decision under a standard WiFi environment. As shown
in Figure 1a, although traditional offloading can reduce end-to-end
latency to around 60 ms, most of the time is consumed by transfer-
ring the image from the mobile phone to the edge server. Therefore,
the network transmission time is the bottleneck of offloading, which
offers new opportunities for speeding up.

In order to reduce the transmission time, an on-hand solution is
to decrease the resolution of the image on the local device and to
interpolate the compressed image on the edge server, denoted as
“Offload-Intp". As shown in Figure 1a, by compressing the size of the
image to 4%, we can reduce the end-to-end latency to around 15 ms.
However, the reduction of time is at the cost of inference accuracy.
“Offload-Intp" suffers 20% accuracy loss as shown in Figure 1b.

Compressive sensing, denoted as “CS", is a sophisticated method
for compressing and reconstructing data, which can mitigate the
negative impact on inference accuracy. However, due to the sub-
optimality of its sparsity assumption, it still suffers around 10%

accuracy loss with an image compression ratio of 25. Moreover,
the slow iterative reconstruction of CS becomes the new bottle-
neck of the end-to-end latency. Since we are transferring visual
image, we can also apply domain knowledge, using JPEG for image
compression. However, it suffers around 14% accuracy loss with a
compression ratio of 25. Furthermore, JPEG only works for visual
image, which has bad compression performance on the interme-
diate visual representations in neural network as well as data in
other domains, as we will show latter.

Recent advances in deep-learning-based data compression tech-
niques offer a data-driven solution to reduce the communication
load. We implement a state-of-the-art data compression technique
for the offloading system, called “Offload-AE" [35], which adopts
the AutoEncoder structure. Although Offload-AE can significantly
reduce the transmission time and have a minor impact on accuracy,
Offload-AE has a complicated encoder model, which consumes
more than 900ms on the mobile device, as shown in Figure 1a.
Moreover, we further compress the encoder in Offload-AE based
on FastDeepIoT [48] to reduce overhead on the mobile device. The
resulted system, called “Offload-AE (Compressed)", still takes over
400 ms, as shown in Figure 1c.

The above difficulty in finding a good trade-off point calls for a
solution that can significantly reduce network transmission time
with almost no compromise on accuracy and with negligible compu-
tational overhead. Our proposed system, called “DeepCOD" attains
those goals. DeepCOD marries solid compressive sensing theory
with flexible deep-learning-based modeling to solve these practical
challenges in offloading. As shown in Figure 1c, compared with
all other general-purpose techniques, deep compressive offloading
can achieve the Pareto optimality by attaining the best inference
accuracy with the least amount of end-to-end latency (of around
10ms in this example). By leveraging the asymmetry in computa-
tional resource across the mobile/embedded device and edge server,
deep compressive sensing achieves the best speed-up with the least
accuracy loss. We will introduce its design, theoretical analysis, and
system implementation in the following sections.
3 DEEP COMPRESSIVE OFFLOADING
We introduce technical details of deep compressive offloading in
this section. The overall design of deep compressive offloading is
illustrated in Figure 2, which includes a lightweight encoder on the
mobile side to compress the data to transfer, and a decoder on the
edge server side to reconstruct the transferred data. Notice that
such design works for any offloading point (i.e., regardless of how
to partition neural networks among the mobile/embedded device
and the edge server). We will postpone the discussion of the best
offloading point to the end of this section.

SenSys ’20, November 16–19, 2020, Virtual Event, Japan S. Yao et al.

L
ig

h
tw

e
ig

h
t

E
n

co
d

e
r

Mobile/Embedded

D
e

co
d

e
r

Edge

Encoded Offloaded Data to TransferDeep Learning Service

Offloaded Data Reconstructed Offloaded Data

Figure 2: The Deep Compressive Offloading designs with a
lightweight encoder on the local device to compress data and
a decoder on the edge server to reconstruct.

We first introduce background on compressive sensing and its
recent extension with deep generative neural networks. Next, we
formulate deep compressive offloading and our design that ensures
recovery guarantees. Then, we investigate the proper way to en-
hance the performance of deep compressive offloading by distilling
knowledge from deep learning services. Finally, we introduce other
offloading-supporting components, including quantization, entropy
encoding, and dynamic offloading point selection.

3.1 Compressive Sensing
The target of compressive sensing is to reconstruct an unknown
vector x ∈ R𝑛 through observing linear measurement with the
possible added noise, which can be formulated as:

y = Ex + 𝜂, (1)

where E ∈ R𝑚×𝑛 is the measurement matrix, and 𝜂 is the measure-
ment noise. Typically, we want to reconstruct the data x with much
fewer observations y, i.e., 𝑚 ≪ 𝑛. Even without the noise, it is
impossible to solve x for such an under-determined problem. There-
fore, we need to impose certain prior knowledge on the solution x,
assuming it to be natural and simple in an application-dependent
way. One widely accepted assumption is sparsity. However, finding
the sparest solution of an under-determined problem is still NP-hard.
Fortunately, the elegant compressive sensing theory proved that
convex optimization could recover the true sparse vector x if the
matrix E satisfies conditions such as the Restricted Isometry Prop-
erty (RIP) or the related Restricted Eigenvalue Condition (REC) [13].
A random matrix is an example that meets RIP, which is widely
used as the measurement matrix. It guarantees that minimizing the
recovery error

x̂ = argmin
x

∥y − Ex∥2 , (2)

under the constraint that x is sparse, leads to accurate reconstruc-
tion x̂ = x with high probability [13]. In practice, the sparsity
constraint of x can be replaced by sparsity in a set of basis Φ. DCT,
Fourier, and wavelet are common choices. Since Φ is a linear trans-
formation, it does not affect the recovery guarantee.

However, the sparsity constraint is not an optimal and univer-
sal assumption for data within various applications. Therefore,
compressive sensing is not a perfect design choice for reducing
offloading transmission latency of an arbitrary IoT service. Re-
cently, pre-trained generative neural networks have been explored
as powerful but implicit alternatives to sparsity constraints for com-
pressive sensing [11]. These pre-trained generative neural network
𝐺𝜃 can easily adapt to the target data distribution and add structural
constraints during reconstruction. The generator 𝐺𝜃 usually maps

a random hidden vector to the data space
x = 𝐺𝜃 (z) . (3)

Instead of explicitly adding sparsity constraints, constraints are
now implicitly controlled by the structure and parameters of the
generator. The reconstruction process (2) now becomes minimizing

ẑ = argmin
z

∥y − E𝐺𝜃 (z)∥2 , (4)

where x in (2) is now 𝐺𝜃 (z). In order to maintain the recovery
guarantee, measurement matrix E needs to satisfy a new condition
called Set-Restricted Eigenvalue Condition (S-REC) [11], which
is a generalization of REC. In addition, in order to acheive small
reconstruction error with a reasonably good compression ratio, the
generator 𝐺𝜃 needs to be an 𝐿-Lipschitz function, where smaller 𝐿
grants the reconstruction with fewer measurements 𝑦 [11].

3.2 Deep Compressive Offloading
However, as we mentioned in Section 2, compressive sens-

ing [14, 18] and its extension with pre-trained generative neural
networks [11] fail to work properly on “lossless" offloading latency
reduction. The main reasons are twofold. On the one hand, the
random measurement matrix and pre-trained generative neural
network cannot perfectly fit the application-specific data distribu-
tion, causing a noticeable loss in inference accuracy. On the other
hand, all aforementioned (traditional and deep-learning based) com-
pressive sensing reconstructions are slow. Both iterative optimiza-
tion (2) [14, 18] and iterative backpropagation over the pre-trained
generative model (4) [11] require thousands of iterations to achieve
a reasonably good result. These methods are far too slow for online
reconstruction in offloading. In the following sections, we refor-
mulate the theory and design of deep compressive offloading to
overcome these challenges and provide practical deployments to
validate our designs.

3.2.1 Trainable Compressive Offloading Modules. We shift the com-
putation load of reconstruction from online iteration steps to offline
training, by setting the hidden vector z of the generative model to
be the measurement y. At the same time, we replace the pre-defined
random measurement matrix E by a trainable kernel E𝜙 . Therefore,
we are training an encoder E𝜙 and a decoder 𝐺𝜃 (·) that can jointly
compress and reconstruct the data during the offloading. Our offline
training objective function is

argmin
𝜃,𝜙

x −𝐺𝜃 (E𝜙 ⊛ x)

2 (5)

where ⊛ denotes the convolution operation, 𝜃 , and 𝜙 are sets of
learnable parameters for decoder and encoder.

Once we have trained the encoder and decoder, we can deploy
them on the local device and edge side respectively. The encoding
process y = E𝜙 ⊛ x has at most the same amount of computation as
the traditional compressive sensing encoding y = Ex, when both of
them are given the same compressing ratio. Next we can reconstruct
the data with a one-shot inference of the decoder, x̂ = 𝐺𝜃 (y), which
is around 1000 times faster than the previous online reconstruction
method (2) and (4). With the help of offline encoder-decoder train-
ing, we can dramatically reduce the time of data reconstruction
without extra computational burdens on the data encoding part.
Simultaneously, training encoder and decoder makes them fit better

Deep Compressive Offloading SenSys ’20, November 16–19, 2020, Virtual Event, Japan

to the offloaded data distribution, which in return helps to improve
the final inference accuracy.

3.2.2 Theoretical Analysis Ensures both Speed-up and Accuracy.
However, without enforcing mathematical properties on encoder
and decoder that ensure the recovery guarantee of compressive
sensing, training the encoder and decoder freely with object func-
tion (5) cannot attain good performance on offloaded data recon-
struction. As we mentioned before, the encoder E𝜙 has to meet the
Set-Restricted Eigenvalue Condition (S-REC) and the decoder𝐺𝜃 (·)
needs to be an 𝐿-Lipschitz function. Next, we discuss the way to
impose these two properties on the encoder and decoder during
training.

First, we introduce our solution for training encoder E𝜙 to meet
S-REC. According to the definition [11], the S-REC requires that for
any two vectors x1 and x2, if they are significantly different, then
the corresponding measurements with transformation E𝜙 should
also be significantly different, which can be formulated as

E𝜙 ⊛ (x1 − x2)

 ≥ 𝛾 ∥x1 − x2∥ − 𝛿, (6)
where 𝛾 > 0 and 𝛿 > 0. 𝛿 is an additive slack term. If 𝛾 → 1,
the decoder can reconstruct perfectly with fewer measurements
generated by the encoder with high probability. In order to achieve
a good compression ratio with a recovery guarantee (i.e., reduc-
ing transmission latency without hurting inference accuracy), we
require our encoder to be isometric, i.e., 𝛾 = 1 in S-REC (6).

Since convolution can be reformulated as matrix multiplication,
we can add regularization on the trainable convolution kernel E𝜙
to force the convolution to be isometry. First, we turn the kernel
into a 2D array [28], i.e., E𝜙 ∈ Rℎ×𝑤×𝑐𝑖×𝑐𝑜 ⇒ E′

𝜙 ∈ Rℎ ·𝑤 ·𝑐𝑖×𝑐𝑜 ,
forming convolution as matrix multiplication. Next, as a linear
transformation, we can impose the isometry property by forcing
the linear transformation matrix to be a semi-orthogonal matrix [1].
Therefore, we add an orthogonal regularization to the encoder
convolution kernel E′

𝜙 , while training encoder,

argmin
𝜙

E′⊺
𝜙

E′
𝜙 − I

 , (7)

where I is the identity matrix. Notice that the regularization (7) still
works when we design the encoder to be a single fully-connected
layer. In this paper, we choose the convolution operation to reduce
the computations and the number of parameters to learn.

Second, we discuss a way of ensuring that the neural network
decoder 𝐺𝜃 is an 𝐿-Lipschitz function. According to previous the-
oretical analysis [11], neural network decoder 𝐺𝜃 needs to be an
𝐿-Lipschitz function, where 𝐿 is called the Lipschitz constant. As-
sume that y1 and y2 are two encoded offloaded data items, then the
decoder 𝐺𝜃 needs to meet

∥𝐺𝜃 (y1) −𝐺𝜃 (y2)∥ ≤ 𝐿 ∥y1 − y2∥ . (8)
Furthermore, a decoder with a smaller Lipschitz constant can recon-
struct perfectly from fewer measurements from the encoder with
high probability. Again, to reduce network latency without hurting
inference accuracy, we have to constrain a neural-network-based
decoder to have a small Lipschitz constant 𝐿.

Since deep compressive offloading is intended to be a general
solution to a broad category of applications, we do not want to
constrain the decoder to be a particular type of neural network. Such
constraint simplifies the analysis of their Lipschitz constant but

prohibits other neural networks that may fit some applications and
their data distribution better. Thus, bounding a neural network to
have an arbitrary design with a Lipschitz constant 𝐿 is challenging.
Fortunately, there exist other related works that target controlling
the Lipschitz constant of neural networks.

Recent research on Generative Adversarial Networks (GAN)
starts to bound the Lipschitz constant of its discriminator neural
network to be smaller than 1, i.e., 𝐿 ≤ 1, which allows using Earth-
Mover distance as the GAN training loss [5]. We adopt one method
that is computationally light and easy to be incorporated into ex-
isting implementations, called spectral normalization [36]. Here,
we briefly introduce the intuition behind spectral normalization
design and its implementation.

Neural networks are layered structures. According to the defi-
nition (8), if we can bound the Lipschitz constant of each layer to
be less than 1, the whole neural network becomes a 1-Lipschitz
function. Without loss of generality, we regard the operations in
each layer to be an affine transformation, Wx + b, followed by an
activation function. On the one hand, the Lipschitz constants of
most activation functions are less than 1, including ReLU and sig-
moid function. On the other hand, Lipschitz constant of an affine
transformation is controlled by the largest singular value of weight
matrix W, denoted by 𝜎 (W). To keep the Lipschitz constant of each
layer less than 1, we normalize the largest singular value of weight
matrix:

𝑆𝑁 (W) = W/𝜎 (W). (9)
And we can use power iteration method to estimate 𝜎 (W) with
very small computational overhead [19].

With the orthogonal regularization on encoder (7) and spectral
normalization on decoder (9), we can ensure that the encoder meets
S-REC with 𝛾 → 1 and the neural network decoder is a 1-Lipschitz
function. These two properties provide deep compressive offloading
a theoretical guarantee to reduce network latency without hurting
the inference accuracy. Therefore, we update our offline training
objective function

argmin
𝜃,𝜙

x −𝐺𝑆𝑁 (𝜃) (E𝜙 ⊛ x)

2 + 𝛼

E′⊺
𝜙

E′
𝜙 − I

 , (10)

where 𝛼 is a hyperparameter to control the orthogonal regulariza-
tion, and 𝑆𝑁 (𝜃) = {𝑆𝑁 (W) : ∀W ∈ 𝜃 }.
3.2.3 Compressive Encoder & Decoder Structures. Although deep
compressive offloading can apply almost all types of encoder-
decoder designs with the objective function (10), we provide our
designs here for illustration. Our encoder and decoder are empiri-
cally proved to be effective in computer vision and speech recogni-
tion applications. However, users are welcome to design their own
encoder or decoder for better speed-up or accuracy.

We illustrate the default encoder and decoder structures and
configurations we used in all our experiments in Figure 3. On the en-
coder side, we design a single convolution E𝜙 to compress the data.
The data to be transferred contains two types of dimensions, spatial-
temporal dimensions, and a feature dimension. Spatial-temporal
dimensions, including height and width of images as well as the
time of voice, share the convolution kernel. The feature dimension
is the left flattened dimension that serves as the input channel of
convolution. To have a lightweight encoder on the mobile and em-
bedded devices, we set the convolution strides to be equal to the

SenSys ’20, November 16–19, 2020, Virtual Event, Japan S. Yao et al.

X

C
on

vo
lu

tio
n

La
ye

r:
O

ut
 (C

ou
t);

K
er

ne
l (

4x
4)

;S
tr

id
e

(4
x4

)

Q
ua

nt
iz

at
io

n

Y ^Y

X̂

R
es

id
ua

l T
ra

ns
po

se
d

C
on

vo
lu

tio
n

R
es

id
ua

l T
ra

ns
po

se
d

C
on

vo
lu

tio
n

(O
ut

: 6
4)

Se
lf

A
tte

nt
io

n
La

ye
r

R
es

id
ua

l T
ra

ns
po

se
d

C
on

vo
lu

tio
n

(O
ut

: 3
2)

D
ee

p
Le

ar
ni

ng
 S

er
vi

ce
:

Im
ag

e
R

ec
og

ni
tio

n

Se
lf

A
tte

nt
io

n
La

ye
r

Encoder Eφ on the Local Device Decoder Gθ on the Edge Server

Residual Transposed Convolution (Output Channel: C)

Conv_Transpose:
Out (C);Kernel (3x3);

Stride (2x2)

Conv_Transpose:
Out (C);Kernel (3x3);

Stride (1x1)

Conv_Transpose:
Out (C);Kernel (3x3);

Stride (2x2)

Self Attention Layer
Conv:

Kernel (1x1)

Conv:
Kernel (1x1)

Conv:
Kernel (1x1)

softmax

attention map

Conv:
Kernel (1x1)

C
on

vo
lu

tio
n

La
ye

r:
O

ut
 (C

in
);

K
er

ne
l (

3x
3)

;S
tr

id
e

(1
x1

)

D
og

Figure 3: The default designs and configurations of decoder and decoder structures that used in all our experiments.
kernel sizes (equals to 4×4 by default). For other data types, such as
speech and time-series sensing data, we can have a similar design
using a 1D convolution. We will introduce the details of the quanti-
zation module in Section 3.4.1. On the decoder side, we adopt the
ideas from recent generative models, using residual transposed con-
volution to expand the size of spatial-temporal dimensions [12, 24]
and using self-attention layer to enhance the spatial-temporal de-
pendency during the generation [51]. The detailed structures of
residual transposed convolution and self-attention layer are illus-
trated in Figure 3.

Notice that the default encoder and decoder structures, illus-
trated in Figure 3, can be readily applied to the cases of offloading
intermediate features, and other types of deep learning services
that take image-based and time-series data as input.

3.3 Distilling Knowledge from Deep Learning
Service

The design and analysis motioned in Section 3.2 focus on proposing
an imbalanced encoder-decoder pipeline that minimizes the data re-
construction loss. However, the main purpose of deep compressive
offloading is not to precisely reconstruct encoded data, but rather
to reconstruct the encoded data in a manner that achieves the best
inference result. Given the constraint of reducing the size of offload-
ing data (i.e., limiting the amount of information we can transmit),
reducing data reconstruction loss and improving the inference per-
formance of the deep learning service can conflict with each other.
Therefore, in order to achieve a better accuracy-efficiency tradeoff,
deep compressive offloading needs to distill knowledge from the
original deep learning service, and learn to encode and decode data
in a way that not only reduces reconstruction loss but also improves
the inference accuracy.

The idea of knowledge distillation was first proposed as a model
compression technique [25] in which a small model is trained to
mimic a pre-trained, larger model (or ensemble of models). In this
paper, the compressive encoder and decoder are trained to mimic
the feature map/pattern that can most significantly trigger the deep
learning service to generate the right inference result. However, as
mentioned before, there is a conflict between reducing data recon-
struction loss and inference loss. If we add additional supervision
for reducing the discrepancy between the inference results from
data before encoding and data after decoding, there will be a con-
flict with the original supervision for perfect reconstruction (10),
which can hurt the final inference accuracy. The intuition is that,
among all possible data that can achieve the same inference result,
many can be different from or even partly conflict with the perfectly
reconstructed data.

ResNet Blocks 1 ResNet Blocks 2 ResNet Blocks 3 ResNet Blocks 4 Output Layer Dog

Less compatible with reconstruction loss

More knowledge (parameters) to distill

Figure 4: An illustration of intermediate representations in
ResNet-50 image recognition service.

Therefore, we have to carefully design the way of distilling
knowledge from deep learning services. Instead of utilizing the
final inference result, we can utilize intermediate features as addi-
tional supervision. We denote the neural network in deep learning
service as 𝐶 (𝑗)

𝜓
(x𝑖), taking input feature from 𝑖-th layer and gener-

ating output feature at 𝑗-th layer. The knowledge distillation can
be formulated as

argmin
𝜃,𝜙

𝐶 (𝑗)
𝜓

(
𝐺𝑆𝑁 (𝜃) (E𝜙 ⊛ x𝑖)

)
−𝐶

(𝑗)
𝜓

(x𝑖)

2 (11)

where 0 ≤ 𝑖 < 𝑗 ≤ 𝐿; 𝑖-th layer is the place where the offloading
takes place, and 𝑗-th layer is the intermediate feature chosen for
knowledge distillation. We omit the orthogonal regularization (7)
for simplicity.

When choosing the layer of representation in knowledge distil-
lation, there exists a tradeoff between the amount of knowledge
to distill and the intensity of conflict with reconstruction loss. A
simple example is illustrated in Figure 4, where we separate the
ResNet-50 image recognition model [24] into four blocks and illus-
trate the heat maps of their intermediate representations. Assume
that we are offloading the input image. On the one hand, lower-level
intermediate representations, providing image edge detection in-
formation, are more compatible with the perfect reconstruction but
contain less knowledge, i.e., parameters in the neural network, for
distillation. On the other hand, high-level representations contain
more knowledge by backpropagating through a large proportion
of the neural network. However, many images are likely to be
mapped to the same representation, which clearly interferes with
the original reconstruction-based training (10).

In this paper, we make a tradeoff by selecting all the interme-
diate features between the offloading and final prediction layers.
Summing up the knowledge distillation losses (11) for all interme-
diate layers naturally balances the tradeoff between the amount
of knowledge to distill and the intensity of conflict with perfect
reconstruction, which works well in our evaluations. Moreover,
we add knowledge distillation loss (11) as an additional loss after
the convergence of training with reconstruction loss (10) solely. It
helps us reduce training time because knowledge distillation re-
quires additional computation to backpropagate loss signals from

Deep Compressive Offloading SenSys ’20, November 16–19, 2020, Virtual Event, Japan

intermediate representations to compressive encoder and decoder.
Note that, with our knowledge distillation design, training deep
compressive offloading does not require any label information.

3.4 Offloading-Supporting Components
We introduce additional offloading-supporting components, in-
cluding quantization and entropy encoding, for further data com-
pression and dynamic offloading partitioning concerning varying
wireless conditions.
3.4.1 Quantization & Entropy Encoding. We can further reduce
the size of data to transfer from the information theory perspective
through quantization and entropy encoding, which is a standard
pipeline in data compression [44]. In deep compressive offload-
ing, we employ a learning-based quantization technique [2, 35, 43]
and the Huffman coding [27] to quantize and encode the result, y,
produced by the compressive encoder as shown in Figure 3.

Given a set of centers C = {𝑐1, · · · , 𝑐𝐿} ⊂ R, we assign every
scalar in y to a center in C based on the nearest neighbor principle

𝑦𝑖 = argmin
𝑗

𝑦𝑖 − 𝑐 𝑗

 . (12)

However, in order to learn the optimal set of quantization centers,
we also rely on the differentiable soft quantization

𝑦𝑖 =

𝐿∑
𝑗=1

exp
(
− 𝜐

𝑦𝑖 − 𝑐 𝑗

)∑𝐿

𝑙=1 exp
(
− 𝜐 ∥𝑦𝑖 − 𝑐𝑙 ∥

) 𝑐 𝑗 (13)

to compute the gradient during backward propagation together
with the a straight-through estimator (STE) [9]. In all our experi-
ments, we set the annealing factor 𝜐 to be 1 for all the time. After
the quantization step, we further encode the result, ȳ, with Huffman
coding to reduce the number of bits to transfer.
3.4.2 Dynamic Offloading Partitioning. In order to deal with the
dynamic wireless link condition, we introduce a dynamic offloading
partitioning algorithm to actively select the best possible offloading
point. Since offloading partitioning has been widely recognized
and investigated in previous literature [30], we do not consider this
part to be the technical contribution of our paper. However, we
introduce it for completeness. Assume that there are 𝑃 possible
offloading partitions in the neural network. For each partition 𝑝 ,
we denote the execution time on the edge server as 𝑡 (𝑒𝑑𝑔𝑒)𝑝 , the
time on the local device as 𝑡 (𝑙𝑜𝑐𝑎𝑙)𝑝 , and the size of offloaded data
as 𝑑𝑝 . The wireless link bandwidth is denoted as 𝐵. Due to the dy-
namic wireless link, we constantly update our estimate of wireless
bandwidth, 𝐵. For example, we can measure the harmonic mean
of data transfer speeds over recent offloading operations, which is
robust to the outliers [29]. (We will discuss the details of estimat-
ing these network performance statistics in Section 4.2.) With this
information, we dynamically select the offloading partition 𝑝 that
minimizes the end-to-end latency as follows,

argmin
𝑝∈{1, · · · ,𝑃 }

𝑡
(𝑒𝑑𝑔𝑒)
𝑝 + 𝑡

(𝑙𝑜𝑐𝑎𝑙)
𝑝 + 𝑑𝑝/𝐵. (14)

4 DEEPCOD DESIGN
In this section, we introduce our offloading system, DeepCOD,
bringing the deep compressive offloading technique proposed
in Section 3 as a flexible service to intelligent IoT applications.
DeepCOD can dynamically provide the near-optimal offloading

decision to deep learning services based on the current local-edge
hardware, software, and network configurations. Intelligent appli-
cations using DeepCOD enjoy substantial speed-up and almost no
loss in inference accuracy. DeepCOD consists of an offline training
& deployment phase and a runtime phase. The system overview is
illustrated in Figure 5.

4.1 Offline Training & Deployment
The offline phase contains two main modules: deep compressive
offloading training, and latency profiling and modeling.

Deep compressive offloading training: In order to provide an adap-
tive compressive offloading strategy to an intelligent application
under different devices and network configurations, DeepCOD
trains compressive encoders and decoders to all potential offload-
ing partitioning points according to the design in Section 3. Since
most of the state-of-the-art neural networks have a block-based
design [16, 24, 42], the starting points of neural network blocks
are good candidates for potential offloading points, which are also
used in our evaluation. We will discuss and evaluate the training
overhead of adding a new offloading point in Section 6.7. Once we
decide the potential offloading points, deep compressive offloading
training is agnostic to hardware, software, and network. Therefore,
it only needs to be done once for each application.

Latency profiling and modelling: In order to have a holistic under-
standing of latency, DeepCOD profiles the mobile/embeded device
and edge server with deep learning inference engine to generate
the execution-time models for a wide range of neural network op-
erations. Recently, great efforts have been made to predict deep
learning execution time accurately through profiling and modelling
neural network operations [17, 30, 48]. The design of effective
deep learning execution time predictors is an interesting research
direction in its own right. DeepCOD employs a state-of-the-art
execution time modelling technique, called FastDeepIoT [48], that
models the execution time of neural networks on a platform with
the corresponding operation types and configurations as inputs.
Neural network profiling and modelling is application agnostic and
only needs to be done once for the given local and edge devices. In
addition, for cold-start throughput prediction, DeepCOD profiles
offloading data transfer delay between the local device and edge
server with different wireless connections for all partition points.

4.2 DeepCOD Runtime
During the execution of intelligent applications with neural net-
works on local devices, DeepCOD can decide the best compressive
offloading point with the least latency from the partition candidates
based on performance predictors.

Performance predictors: DeepCOD includes neural network
execution-time predictors for the local device and edge server, as
well as a network bandwidth predictor, asmentioned in Section 3.4.2.
With the help of profiling and modeling results from the offline
phase, DeepCOD uses a simple but effective predictor [48] to esti-
mate the execution time of neural network operations on the local
device and edge server. Given an offloading point, we can estimate
the computation latency by analyzing the network configurations
of neural network partitions and compressive encoders & decoders.

SenSys ’20, November 16–19, 2020, Virtual Event, Japan S. Yao et al.

Intelligent Service

Local

Deep Learning Inference

Engine (TensorFlow)
Data Transfer

Interface

Partition Decision Marker Performance Predictors

Compressive

Encoder

L
ig

h
tw

e
ig

h
t

E
n

c
o

d
e

r

Data Transfer

Interface

Deep Learning Inference

Engine (TensorFlow)

Intelligent Service
Compressive

Decoder

D
e

c
o

d
e

r

Edge

Potential Partition

Training Potential Compressive

Encoders & Decoders

Runtime Phase

Deep Compressive Offloading

Training

Performance (Latency)

Profiling and Modelling

Offline Training & Deployment Phase

Model Executed Model Not Executed

Data Transfer Interface Data Transfer Interface

Local Edge

Deep Learning Inference Engine (TensorFlow)

Local Edge

t
conv

(config
conv

) t
fc

(config
fc
)

t
rnn

(config
rnn

)

(edge) (edge)

(edge)

t
conv

(config
conv

) t
fc

(config
fc
)

t
rnn

(config
rnn

)

(mobile) (mobile)

(mobile)

Figure 5: System overview of DeepCOD.
Building on insights from prior work, we estimate the current

wireless bandwidth based on the harmonic mean of the observed
throughput of the last ten offloading transmissions [29]. In practice,
we can only obtain the round-trip latency, including the execu-
tion time of the compressive decoder and the second partition of
the application inference model on edge. Therefore, we estimate
the network latency by deducting the executing time on the edge
(calculated by neural network execution-time predictor) from the
round-trip latency. Then, we can estimate throughput according to
the size of transferred data. In addition, we use the mean value of
network profiling results from the offline phase as a rough estima-
tion during the cold-start period.

Partition decision maker: DeepCOD dynamically selects the op-
timal offloading point by leveraging the latency estimates from
neural network execution-time and network throughput predictors.
The partition decision is made based on Equation (14).

Compressive offloading: According to the partition decision
maker, the deep learning engine on the local device executes the
assigned proportion of the neural network and the compressive
encoder, and transfers compressed data together with partition
decision to the edge. The system on edge takes the transferred data
to execute the corresponding compressive decoder as well as the
remaining neural network. The inference result is transferred back
to the local device.

5 IMPLEMENTATION
In this section, we briefly introduce the hardware and software
implementation of DeepCOD.

5.1 Hardware
The mobile client is implemented on Android OS and tested on
two different Android phones. Google Pixel is equipped with a
Quad-core (2x2.15 GHz & 2x1.6 GHz) Kryo CPU and Adreno 530
GPU; Nexus 6 is equipped with a 2.7 GHz quad-core Krait 450 CPU
and Adreno 420 GPU. Mobile devices are connected to the edge
server through WiFi connection with a TP-Link AC1200 router or
connected through LTE connection. The edge server is a Linux
desktop equipped with an Intel Core i7-5820K CPU and two types
of GPUs, including Nvidia Titan V and Nvidia GeForce GTX Titan
X. We place the edge server inside a campus office building, and
the server is linked to the router through a 1Gbps cable.

5.2 Software
We assume that IoT deep learning services have TensorFlow Saved-
Models (or checkpoints) for their original deployments. The com-
pressive encoders and decoders are built upon the original model
and trained accordingly. We export the resulting model as a Tensor-
Flow SavedModel for deployment with an additional placeholder
to control the offloading partition during runtime. SavedModel is
further converted to a TensorFlow Lite model for the deployment
on the mobile side with Android OS.

We utilize TensorFlow Model Benchmark Tool [26] to profile the
execution time of deep learning components on both the mobile
device and the edge server. The benchmark tool has one warm-up
run to initialize themodel and then profiles all component execution
times for 20 runs without internal delay. We then compute mean
values as the profiled execution time.

At runtime, on the mobile side, we use TensorFlow Lite AAR
hosted at JCenter as the mobile inference engine. The saved Tensor-
Flow Lite model is preloaded to GPU or CPU. TCP link to the edge
server is also built beforehand with general socket API. Before each
inference, the partition decision maker with performance predictor
generates the offloading partition, which is fed into the correspond-
ing placeholder in the model. In order to reduce the TensorFlow Lite
Engine overhead, ByteBuffers are used to feed input data and fetch
compressed data to transfer. For offloading, data are transferred to
the edge through a TCP link over Android APIs. With the runtime
on edge, the TensorFlow serving [37] also preloads the model into
corresponding GPU memory to reduce the initialization overhead.
Once the serving receives the data with the selected partition point,
it will feed data into the corresponding compressive decoder and
the remaining partition of the neural network is executed to finish
the inference. The inference result is transferred back to the mobile
device via the same link.

6 EVALUATION
In this section, we conduct two sets of experiments. The first set
evaluates the performance of deep compressive offloading as a gen-
eral and (nearly) “lossless" offloading technique for deep learning
services. We investigate the trade-off between the final inference
accuracy and the compression ratio of offloaded data with differ-
ent offloading points compared to state-of-the-art offloading tech-
niques. The second set evaluates the DeepCOD system and verifies
the efficacy of deep compressive offloading in real-world settings,
when collaborating with other modules introduced in Section 4.
Compared with state-of-the-art neural network offloading systems
and on-device processing with model compression [30–32, 35, 48],
DeepCOD demonstrates consistent and substantial reductions on
end-to-end service latency under various real-world mobile, edge,
and network configurations.

6.1 Applications & Datasets
All experiments are conducted with three of the most widely de-
ployed applications, image recognition, speech recognition, and
object detection in the video stream.

The image recognition service classifies an image into one of
1000 object categories. We take the widely-deployed deep learning
model, ResNet-50 [24], as the image recognition service. The ResNet-
50 model is pre-trained on the ImageNet ILSVRC2012 dataset [15].

Deep Compressive Offloading SenSys ’20, November 16–19, 2020, Virtual Event, Japan

The ImageNet dataset is a large scale hand-labeled image recog-
nition dataset, containing 1.2 million samples in the training set
and 50000 samples in the testing set. For all experiments related to
the image recognition service, We will train all our learning-based
offloading/compression models on the training set of ImageNet and
test all the models and systems on the testing set of ImageNet.

The speech recognition service converts recorded utterances into
English text transcriptions.We take the widely-deployed deep learn-
ing model, DeepSpeech [23], as the speech recognition service. The
DeepSpeech model is pre-trained on the LibriSpeech dataset [38].
The LibriSpeech dataset is a large-scale corpus of reading English
speech, containing 100 hours speech in the training set and 5 hours
speech in the testing set. For all experiments related to the speech
recognition service, We will train all our learning-based offload-
ing/compression models on the training set of LibriSpeech and test
all the models and systems on the testing set of LibriSpeech.

The object detection service identifies and locates objects within
images and videos. We take YOLOv3 as the object detection mod-
ule [41], pre-trained on the COCO dataset [33]. Due to space limita-
tions, we illustrate the object detection service with a video demo 2.
In the demo, we deploy a YOLOv3-based object detection appli-
cation on a Raspberry Pi with edge offloading. Compared to the
traditional offloading with optimal partition, DeepCOD enjoys ×8
speed up in practice.
6.2 Baseline Systems
We compare the proposed deep compressive offloading (DeepCOD)
with the other five baseline systems, including both offloading and
on-device processing based approaches.
Offload-Intp: subsamples the resolution of offloading data before
transmission, e.g., spatial resolution for images and temporal resolu-
tion for speech, and interpolates with bilinear or bicubic method on
the edge. Such design works for intermediate representation as well
by subsampling and interpolating the non-feature dimensions. We
then apply the same quantization and encoding step as DeepCOD,
which improves the performance.
Offload-CS: compresses and reconstructs offloaded data based on
compressive sensing. For the basis that ensures sparsity, we choose
the best performing one from DCT and wavelet basis accordingly.
We use iterative shrinkage-thresholding algorithm (ISTA) for re-
construction [8].
Offload-Lossy: integrates the state-of-the-art lossy offloading de-
signs for deep learning services [31, 32]. One uses JPEG based
compression, and the other uses quantization with Huffman Cod-
ing. We cheat in their favor by choosing a better-performing design
from these two.
Offload-AE+: leverages the state-of-the-art deep learning data com-
pression technique [35] to compress (including quantization and
coding) and reconstruct the offloaded data based on the autoen-
coder structure, called Offload-AE. As mentioned in Section 2, the
encoder of Offload-AE has a very complicated neural network struc-
ture, so we cheat in their favor by using the state-of-the-art model
compression method [48] to compress the encoder with almost
no performance loss, which significantly reduces the end-to-end
latency. The resulted “cheated" model is called Offload-AE+.

2https://youtu.be/Acqm0iDnBWw

On-Device: is an on-device processing system without any offload-
ing component. We compress the deep learning services using the
state-of-the-art model compression method [48], and deploy the
compressed models on the local device. We compare it with offload-
ing systems when having limited network access.

We also include lossless offloading with no additional processing
on offloaded data [30], denoted as Offload, which helps us better
to understand the speed-up and accuracy loss of these techniques.
We do not illustrate the detailed results of previous works using
neural networks as compressive sensing priors [11] due to their
inefficiency.With a Titan VGPU, [11] takesmore than one second to
recover a 224×224 image, while the DeepCOD decoder takes around
2 ms. These works employ online iterative optimization, taking at
least hundreds of gradient descend steps to obtain a reasonably
good recovery, which is not suitable for practical offloading usage.

6.3 Network Latency vs. Accuracy Loss
In this subsection, we evaluate the tradeoff between the model
inference accuracy and the averaged compression ratio of offloaded
data. The On-Device baseline is not included here because it does
not contain the offloading module.

We denote by 𝑡𝑛𝑒𝑡 the time used for transferring data during
offloading through a WiFi connection of 450Mbps bandwidth, cal-
culated by deducting computation time on the mobile device and
the edge server from the end-to-end offloading latency. Therefore,
𝑡𝑛𝑒𝑡 is a round-trip time, including transferring offloaded data from
the mobile device to the edge server and receiving results from the
edge server to the mobile device. Since ResNet-50 adopts the block-
based design, the sizes of intermediate representations only change
after each block’s first layer. Therefore, selecting other layers as
offloading points in each block can only increase computation time
with no data transfer time reduction with a high probability. The
first layer in each block is thus chosen in Table 1. Since there are
only five layers in the DeepSpeech model, the tradeoffs of all layers
in DeepSpeech are shown in Table 2.

For both vision and speech tasks under all the offloading points,
DeepCOD performs significantly better than all baseline algorithms.
Compared with the lossless offloading, DeepCOD can reduce the
size of offloaded data by a factor of 50 to 1000, and reduce the
data transmission time by a factor of 10 to 100. At the same time,
DeepCOD only suffers at most 1% accuracy loss.

As a comparison, all other non-learning-based baseline algo-
rithms (including Offload-CS and Offload-Lossy) are at least twice
slower than DeepCOD, while suffering more accuracy loss. The
other deep-learning-based offloading system, Offload-AE+, is a com-
petitive design in terms of the quality of compression of offloaded
data. This is because the autoencoder neural network used [35] in
that system is designed for data compression. Since Offload-AE+
has a more complicated encoder network, it should achieve the
best tradeoff between the data compression ratio and the inference
quality. However, DeepCOD still manages to beat Offload-AE+ due
to the knowledge distillation component designed in Section 3.3.
DeepCOD is designed not only for reducing the data reconstruction
loss but also for improving the inference performance. In addition,
we will show that the encoder of Offload-AE+ imposes a significant
overhead on mobile devices, resulting in a large end-to-end latency.

https://youtu.be/Acqm0iDnBWw

SenSys ’20, November 16–19, 2020, Virtual Event, Japan S. Yao et al.

Table 1: Tradeoff between model inference accuracy (Top-5 classification accuracy) and compression ratio of offloaded data
for image recognition service with ResNet-50 model through WiFi connection with 450Mbps bandwidth.

Input Block1 Block2
Size 𝑡𝑛𝑒𝑡 Acc Size 𝑡𝑛𝑒𝑡 Acc Size 𝑡𝑛𝑒𝑡 Acc

DeepCOD 5.7KB
(0.97%)

4.3ms
(7.1%)

92.0%
(-1.1%)

980B
(0.12%)

2.8ms
(3.5%)

92.0%
(-1.1%)

245B
(0.02%)

2.4ms
(1.5%)

92.1%
(-1.0%)

Offload-CS 18.5KB
(3.1%)

10.9ms
(18.0%)

91.7%
(-1.4%)

94.6KB
(12.1%)

16.0ms
(20.1%)

80.1%
(-13.1%)

177KB
(11.3%)

26.8ms
(16.8%)

79.0%
(-14.1%)

Offload-Intp 24.8KB
(4.2%)

12.8ms
(21.2%)

91.8%
(-1.3%)

95.2KB
(12.1%)

16.1ms
(20.2%)

75.7%
(-17.4%)

178KB
(11.4%)

26.8ms
(16.8%)

78.8%
(-14.3%)

Offload-Lossy 19.5KB
(3.3%)

12.3ms
(20.3%)

91.7%
(-1.4%)

94.7KB
(12.1%)

16.0ms
(20.1%)

77.1%
(-16.0%)

178KB
(11.4%)

26.8ms
(16.8%)

79.0%
(-14.1%)

Offload-AE+ 12.2KB
(2.1%)

7.8ms
(12.9%)

92.0%
(-1.1%)

14.7KB
(1.9%)

8.5ms
(10.7%)

92.0%
(-1.1%)

17.2KB
(1.1%)

8.6ms
(5.4%)

92.1%
(-1.0%)

Offload 588KB 60.5ms 93.1% 784KB 79.6ms 93.1% 1568KB 159.2ms 93.1%
Block3 Block4

Size 𝑡𝑛𝑒𝑡 Acc Size 𝑡𝑛𝑒𝑡 Acc

DeepCOD 184B
(0.02%)

2.3ms
(2.9%)

92.0%
(-1.1%)

123B
(0.03%)

2.2ms
(5.1%)

92.1%
(-1.0%)

Offload-CS 87.4KB
(11.1%)

15.3ms
(19.2%)

86.5%
(-6.6%)

80.4KB
(20.5%)

15.2ms
(35.1%)

89.0%
(-4.1%)

Offload-Intp 87.5KB
(11.2%)

15.3ms
(19.2%)

86.9%
(-6.2%)

80.6KB
(20.6%)

15.2ms
(35.1%)

89.5%
(-3.6%)

Offload-Lossy 87.4KB
(11.1%)

15.3ms
(19.2%)

86.6%
(-6.5%)

80.8KB
(20.6%)

15.2ms
(35.1%)

89.1%
(-4.0%)

Offload-AE+ 12.3KB
(1.6%)

7.7ms
(9.7%)

92.0%
(-1.1%)

6.7KB
(1.7%)

5.3ms
(12.2%)

92.1%
(-1.0%)

Offload 784KB 79.6ms 93.1% 392KB 43.3ms 93.1%

Table 2: Tradeoff betweenWord Error Rate (WER) and compression ratio of offloaded data for speech recognition service with
DeepSpeech model through WiFi connection with 450Mbps bandwidth.

Input Layer1 Layer2
Size 𝑡𝑛𝑒𝑡 WER Size 𝑡𝑛𝑒𝑡 WER Size 𝑡𝑛𝑒𝑡 WER

DeepCOD 17.9KB
(1.5%)

8.8ms
(8.2%)

0.085
(+0.003)

7.3KB
(0.2%)

6.9ms
(1.8%)

0.087
(+0.005)

5.5KB
(0.1%)

4.3ms
(1.1%)

0.085
(+0.003)

Offload-CS 140KB
(12.1%)

25.8ms
(24.1%)

0.231
(+0.149)

551KB
(11.5%)

50.6ms
(13.4%)

0.144
(+0.062)

550KB
(11.5%)

50.5ms
(13.4%)

0.128
(+0.046)

Offload-Intp 142KB
(12.3%)

25.9ms
(24.2%)

0.262
(+0.18)

550KB
(11.5%)

50.6ms
(13.4%)

0.148
(+0.066)

550KB
(11.5%)

50.6ms
(13.4%)

0.313
(+0.231)

Offload-Lossy 144KB
(12.4%)

25.9ms
(24.2%)

0.264
(+0.182)

551KB
(11.5%)

50.6ms
(13.4%)

0.145
(+0.063)

551KB
(22.4%)

50.6ms
(13.4%)

0.135
(+0.053)

Offload-AE+ 21.7KB
(1.9%)

8.9ms
(8.3%)

0.088
(+0.006)

45KB
(0.9%)

23.3ms
(6.2%)

0.09
(+0.008)

30KB
(0.6%)

20.3ms
(5.4%)

0.087
(+0.005)

Offload 1158KB 107.2ms 0.082 4800KB 377.9ms 0.082 4800KB 377.9ms 0.082
Layer3 Layer4 Layer5

Size 𝑡𝑛𝑒𝑡 WER Size 𝑡𝑛𝑒𝑡 WER Size 𝑡𝑛𝑒𝑡 WER

DeepCOD 4.4KB
(0.1%)

4.0ms
(1.1%)

0.085
(+0.003)

3.7KB
(0.08%)

3.8ms
(1.0%)

0.084
(+0.002)

2.9KB
(0.06%)

3.7ms
(1.0%)

0.084
(+0.002)

Offload-CS 552KB
(11.5%)

50.7ms
(13.4%)

0.145
(+0.063)

550KB
(11.5%)

50.5ms
(13.4%)

0.126
(+0.044)

550KB
(11.5%)

50.5ms
(13.4%)

0.131
(+0.049)

Offload-Intp 551KB
(11.5%)

50.6ms
(13.4%)

0.099
(+0.017)

550KB
(11.5%)

50.5ms
(13.4%)

0.098
(+0.016)

550KB
(11.5%)

50.5ms
(13.4%)

0.191
(+0.109)

Offload-Lossy 551KB
(11.5%)

50.6ms
(13.4%)

0.159
(+0.077)

551KB
(11.5%)

50.6ms
(13.4%)

0.119
(+0.037)

551KB
(11.5%)

50.6ms
(13.4%)

0.133
(+0.051)

Offload-AE+ 25.5KB
(0.5%)

16.3ms
(4.3%)

0.087
(+0.005)

21KB
(0.4%)

15.4ms
(4.1%)

0.087
(+0.005)

16.5KB
(0.3%)

8.4ms
(2.2%)

0.086
(+0.004)

Offload 4800KB 377.9ms 0.082 4800KB 377.9ms 0.082 4800KB 377.9ms 0.082

Deep Compressive Offloading SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Pixel GeForce Pixel TitanV Nexus6 GeForce Nexus6 TitanV
0

20

40

60

80

Ti
m

e
(m

s)

Mobile Execution Time
Network Transmission Time
Edge Execution Time

DeepCOD

Offload-Lossy

Offload

Offload-AE+

Figure 6: End-to-end offloading latency of image recogni-
tion through WiFi with 450Mbps bandwidth.

Pixel GeForce Pixel TitanV Nexus6 GeForce Nexus6 TitanV
0

50

100

150

Ti
m

e
(m

s)

Mobile Execution Time
Network Transmission Time
Edge Execution TimeDeepCOD

Offload-Lossy

Offload

Offload-AE+

Figure 7: End-to-end offloading latency of speech recogni-
tion through WiFi with 450Mbps bandwidth.

Moreover, only learning-based offloading techniques, i.e., Deep-
COD and Offload-AE+, work well for compressing intermediate
representations. It is not the main compression algorithms in the
baselines but rather the entropy encoding components that con-
tribute to the offloaded data compression if we want to have a
similar prediction performance as DeepCOD. The reason is that
compressive sensing, lossy encoding, and interpolation have as-
sumptions on offloaded data, i.e., sparsity on a particular domain,
or spatial/temporal continuity. All these assumptions fail to work
properly on intermediate representations in neural networks. Since
developers cannot investigate the best data assumptions for all
possible applications, the evaluation suggests that DeepCOD is a
better solution that provides a flexible, time-efficient, and almost
lossless offloading design for deep learning services.

6.4 DeepCOD: End-to-End Latency
Previous experiments have shown that deep compressive offload-
ing is a flexible and effective solution for reducing the network
transmission time with almost no accuracy loss. In this subsection,
we test our offloading system, DeepCOD. We compare DeepCOD
to the state-of-the-art lossless and lossy neural network offloading
systems, Offload, Offload-Lossy, and Offload-AE+ [30–32, 35] with
the same data compression pipelines as described in Section 6.3. We
do not show the evaluation results of Offload-CS, because the re-
construction in compressive sensing uses slow iterative algorithms,
which greatly increases the end-to-end offloading latency. We apply
the same dynamic offloading partitioning design, as described in
Section 3.4.2 and 4.2, to all baseline systems.

Wemeasure end-to-end offloading latency (includingmobile-side
execution time, network transmission time, and edge-side execution
time) of the offloading system for the image and speech recognition
services with the same set of potential offloading points, as shown
in Table 1 and 2. We conduct experiments with various mobile, edge,
and network configurations to verify whether DeepCOD can enjoy
consistent and significant speed-ups under various mobile-edge-
network settings. In the evaluation, we have two mobile devices:
Google Pixel (Pixel) and Nexus 6 (Nexus6); two GPUs on edge:

Pixel GeForce Pixel TitanV Nexus6 GeForce Nexus6 TitanV
0

100

200

300

400

500

600

Ti
m

e
(m

s)

Mobile Execution Time
Network Transmission Time
Edge Execution Time

DeepCOD

Offload-Lossy

Offload-AE+
Offload

Figure 8: End-to-end offloading latency of image recogni-
tion through LTE.

Pixel GeForce Pixel TitanV Nexus6 GeForce Nexus6 TitanV
0

500

1000

1500

Ti
m

e
(m

s)

Mobile Execution Time
Network Transmission Time
Edge Execution Time

DeepCOD

Offload-Lossy

Offload-AE+
Offload

Offladoing Point
Switching

Figure 9: End-to-end offloading latency of speech recogni-
tion through LTE.
Nvidia Titan V (TitanV) and Nvidia GeForce GTX Titan X (GeForce);
two wireless connections: WiFi with 450Mbps bandwidth and LTE.
In all experiments here, we make sure that all offloading systems are
not allowed to reduce the accuracy or to increase the error by more
than 5% . DeepCOD achieves the best inference performance (at 1%
loss) except for the lossless system, Offload.

The evaluation results are illustrated in Figure 6 to 9. DeepCOD
can consistently reduce end-to-end offloading latency of Offload
and Offload-Lossy by a factor from 5 to 7.5 and a factor from 2 to 3.5
respectively. One possible concern about DeepCOD is that reducing
network transmission time will cause computational overhead on
the mobile device or edge server. The overheads of compressive
encoder and decoder are limited, even though we have not made
special attempts to improve their time efficiency. The compressive
encoder is computationally efficient by nature, imposing only a
small overhead on mobile phones. By contrast, Offload-AE+ has
a relatively high end-to-end latency. Even when we already com-
pressed the encoder of Offload-AE+,it still takes more than 300ms
and 500ms to encode the image, and takes more than 1s and 2s
to encode the voice features on Pixel and Nexus6. In addition, the
dynamic offloading partitioning estimates the computation and net-
work conditions, and selects the best offloading point for achieving
shorter end-to-end latency as shown in Figure 9.

6.5 Energy Consumption
This subsection measures our local device’s energy consumption
and ensures that the encoding part of DeepCOD does not impose a
large energy overhead locally. Without loss of generality, Nexus 6
is the local device. Since Offload-AE+, Offload, and On-Device have
a large computational overhead on local devices, we do not include
these baselines in this experiment. The partition decision maker,
following the procedure described in Section 3.4, is operated under
a standard 450Mbps WiFi connection. We set up the image recogni-
tion service (as mentioned in Section 6.1) and estimate the average
encoding energy consumption on Nexus 6 by PowerTutor [52] with
1,000 offloading trials. As shown in Table 3, DeepCOD has little
energy overhead compared to other baselines.

SenSys ’20, November 16–19, 2020, Virtual Event, Japan S. Yao et al.

Table 3: Energy overhead (mJ) of encoding.

DeepCOD Offload-Intp Offload-Lossy
Image 28 27 41
Speech 38 35 25

0 50 100 150 200 250 300 350 400 450

10

50

500

5000

Bandwidth (Mbps)

En
d−

to
−E

nd
 L

at
en

cy
 (m

s)

DeepCOD
On−Device
Offload
Offload−Lossy
Offload−AE+

(a) Image recognition

0 50 100 150 200 250 300 350 400 450

50

250
500

5000
10000

Bandwidth (Mbps)

En
d−

to
−E

nd
 L

at
en

cy
 (m

s)

DeepCOD
On−Device
Offload
Offload−Lossy
Offload−AE+

(b) Speech recognition

Figure 10: End-to-end offloading latency under various
bandwidth conditions (y-axis log scale)

0 10 20 30 40 50

20

40

60

80

100

Background Traffic (Mbps)

En
d−

to
−E

nd
 L

at
en

cy
 (m

s)

DeepCOD
Offload
Offload−Lossy

(a) Image recognition

0 10 20 30 40 50
20

40

60

80

100

120

140

160

Background Traffic (Mbps)

En
d−

to
−E

nd
 L

at
en

cy
 (m

s)

DeepCOD
Offload
Offload−Lossy

(b) Speech recognition

Figure 11: End-to-end offloading latencyunder various back-
ground network traffic.
6.6 Impact of Bandwidth & Background Traffic
In this subsection, we evaluate offloading systems under different
network conditions by either limiting the bandwidth for the extreme
conditions of the wireless link or generating background traffic for
the normal usage. We choose the Google Pixel and edge server with
GeForce GTX Titan X GPU.

We uniformly select ten WiFi bandwidth settings between 1
Mbps to 450 Mbps. The measured end-to-end latencies of image
and speech recognition services are illustrated in Figure 10, where
DeepCOD significantly mitigates the impact of low bandwidth,
reducing overall latency by 6× to 35×. The reasons are twofold.
On the one hand, DeepCOD transfers data of a much smaller size,
thereby withstanding lower network bandwidth. On the other hand,
as shown in Table 1 and 2, deep compressive offloading works for
intermediate representations as well. With the help of dynamic
offloading partitioning, DeepCOD can decide to do a little more
work locally, which significantly reduces network latency when
network bandwidth is scarce. For example, DeepCOD can maintain
a 62ms and 188ms end-to-end latency for image and speech recog-
nition services, respectively, with only 1Mbps bandwidth, which is
faster than all the baseline systems. Besides, DeepCOD is the only
offloading system that can beat On-Device, the model compression
technique, all the time.

We gradually increase the background network traffic with a
network traffic generator from 0 to 50Mbps. We exclude On-Device
and Offload-AE+ from this experiment because the end-to-end la-
tencies of these two systems are significantly larger than others
under normal traffic conditions. As shown in Figure 11, the perfor-
mance (end-to-end latency) of DeepCOD remains almost the same
when we increase the background network traffic.

Also, as the background network traffic increases, DeepCOD has
a lower growth rate of latency than the other two baseline systems.

Table 4: Training overhead of DeepCOD.

DeepCOD Original
ImageNet (1.3M Pictures) 4.8 ± 0.8h 134h
LibriSpeech (300h Speech) 1.6 ± 0.3h 23h

6.7 Training Overhead
Another possible concern about DeepCOD is the training overhead
of the compressive encoder and decoder because adding a new
offloading point needs us to train a new set of encoder and decoder.
In this subsection, we demonstrate the training overhead of deep
compressive encoder and decoder compared to the original neural
network’s training time. All models are trained with a Nvidia Titan
V GPU. The training overhead is shown in Table 4. When compared
with the training time of the original deep learning models, Deep-
COD has a small training overhead. In addition, deep compressive
offloading is agnostic to hardware and software. Therefore, the
compressive offloading encoder and encoder can be trained only
once on the cloud with distributed (and multi-GPU) training for
further reducing the training overhead [20].

7 CONCLUSION
In this paper, we proposed deep compressive offloading, a general-
purpose offloading framework to reduce end-to-end offloading la-
tency with almost no accuracy loss. By taking the computational
capabilities of local and edge devices into consideration, we design
an asymmetric encoder-decoder structure that integrates the com-
pressive sensing theory with deep neural networks. Therefore, deep
compressive sensing can be trained based on theoretical guidelines
to ensure a recovery guarantee. A real-world system, DeepCOD,
is designed and implemented to provide the deep compressive of-
floading function to intelligent sensing and recognition services.
Compared with state of the art, DeepCOD can consistently reduce
offloading latency by a factor of 2 to 35 with at most 1% accuracy
loss under various mobile-edge-network configurations.

DeepCOD is designed to be an application-agnostic offloading
system. Given a set of hyper-parameters (potential offloading points
and compression ratios), we can construct a DeepCOD offloading
system for a wide range of deep vision, speech, and sensing appli-
cations based on Sections 3 and 4. We can further extend DeepCOD
to non-deep-learning applications if we are able to represent the
offloading data into a set of tensors. However, much more future
research is needed. Automatically selecting the optimal offloading
points and compression ratios are not easy tasks by themselves. In
addition, we need to generalize the theory and design of DeepCOD
to arbitrary offloading points and compression ratios with low cost,
enabling quality-aware offloading scheduling in the future compres-
sive offloading system. DeepCOD is also agnostic to the domain
knowledge of sensing signals. More work is needed to leverage
those domain-specific spatial-temporal dependencies for a better
accuracy-efficiency tradeoff.

ACKNOWLEDGMENTS
We sincerely thank for the invaluable comments from anonymous
shepherding and reviewing. Research reported in this paper was
sponsored in part by DARPA award W911NF-17-C-0099, DTRA
award HDTRA1-18-1-0026, and the Army Research Laboratory
under Cooperative Agreements W911NF-17-2-0196.

Deep Compressive Offloading SenSys ’20, November 16–19, 2020, Virtual Event, Japan

REFERENCES
[1] K. M. Abadir and J. R. Magnus. Matrix algebra, volume 1. Cambridge University

Press, 2005.
[2] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini, and

L. V. Gool. Soft-to-hard vector quantization for end-to-end learning compressible
representations. In Advances in Neural Information Processing Systems, pages
1141–1151, 2017.

[3] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and L. V. Gool. Generative
adversarial networks for extreme learned image compression. In Proceedings of
the IEEE International Conference on Computer Vision, pages 221–231, 2019.

[4] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al. Deep speech 2: End-to-end
speech recognition in english and mandarin. In International conference on
machine learning, pages 173–182, 2016.

[5] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

[6] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] R. G. Baraniuk. Compressive sensing. IEEE signal processing magazine, 24(4),
2007.

[8] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[9] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

[10] S. Bhattacharya and N. D. Lane. Sparsification and separation of deep learning
layers for constrained resource inference on wearables. In Proceedings of the 14th
ACM Conference on Embedded Network Sensor Systems CD-ROM, pages 176–189.
ACM, 2016.

[11] A. Bora, A. Jalal, E. Price, andA. G. Dimakis. Compressed sensing using generative
models. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 537–546. JMLR. org, 2017.

[12] A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[13] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. arXiv preprint
math/0409186, 2004.

[14] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences, 57(11):1413–1457, 2004.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[17] A. E. Eshratifar and M. Pedram. Energy and performance efficient computation
offloading for deep neural networks in a mobile cloud computing environment.
In Proceedings of the 2018 on Great Lakes Symposium on VLSI, pages 111–116.
ACM, 2018.

[18] T. Goldstein and S. Osher. The split bregman method for l1-regularized problems.
SIAM journal on imaging sciences, 2(2):323–343, 2009.

[19] G. H. Golub and H. A. Van der Vorst. Eigenvalue computation in the 20th century.
In Numerical analysis: historical developments in the 20th century, pages 209–239.
Elsevier, 2001.

[20] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,
Y. Jia, and K. He. Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017.

[21] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and
signal processing, pages 6645–6649. IEEE, 2013.

[22] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[23] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,
S. Satheesh, S. Sengupta, A. Coates, et al. Deep speech: Scaling up end-to-end
speech recognition. arXiv preprint arXiv:1412.5567, 2014.

[24] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[25] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[26] https://github.com/tensorflow/tensorflow/. Tensorflow benchmark tool.
tree/master/tensorflow/tools/benchmark.

[27] D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding.
In Proceedings of the 22nd ACM international conference on Multimedia, pages
675–678. ACM, 2014.

[29] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and stability in
http-based adaptive video streaming with festive. IEEE/ACM Transactions on
Networking (ToN), 22(1):326–340, 2014.

[30] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang. Neuro-
surgeon: Collaborative intelligence between the cloud and mobile edge. In ACM
SIGARCH Computer Architecture News, volume 45, pages 615–629. ACM, 2017.

[31] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay. Edge-host partitioning of deep
neural networks with feature space encoding for resource-constrained internet-
of-things platforms. In 2018 15th IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), pages 1–6. IEEE, 2018.

[32] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu. Jalad: Joint accuracy-and
latency-aware deep structure decoupling for edge-cloud execution. In 2018 IEEE
24th International Conference on Parallel and Distributed Systems (ICPADS), pages
671–678. IEEE, 2018.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft coco: Common objects in context. In European conference
on computer vision, pages 740–755. Springer, 2014.

[34] L. Liu, H. Li, and M. Gruteser. Edge assisted real-time object detection for mobile
augmented reality. In MobiCom. ACM, 2019.

[35] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool. Conditional
probability models for deep image compression. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4394–4402, 2018.

[36] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

[37] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Rajashekhar,
S. Ramesh, and J. Soyke. Tensorflow-serving: Flexible, high-performance ml
serving. arXiv preprint arXiv:1712.06139, 2017.

[38] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210. IEEE, 2015.

[39] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. Deepdecision: Amobile deep learning
framework for edge video analytics. In IEEE INFOCOM 2018-IEEE Conference on
Computer Communications, pages 1421–1429. IEEE, 2018.

[40] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[41] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[42] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[43] L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy image compression with
compressive autoencoders. arXiv preprint arXiv:1703.00395, 2017.

[44] G. Wade. Signal coding and processing. Cambridge university press, 1994.
[45] Y. Weiss, H. S. Chang, and W. T. Freeman. Learning compressed sensing. In

Snowbird Learning Workshop, Allerton, CA. Citeseer, 2007.
[46] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher. Deepsense: A unified deep

learning framework for time-series mobile sensing data processing. In Proceedings
of the 26th International Conference on World Wide Web, pages 351–360, 2017.

[47] S. Yao, A. Piao, W. Jiang, Y. Zhao, H. Shao, S. Liu, D. Liu, J. Li, T. Wang, S. Hu,
et al. Stfnets: Learning sensing signals from the time-frequency perspective with
short-time fourier neural networks. In The World Wide Web Conference, pages
2192–2202, 2019.

[48] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher. Fastdeepiot:
Towards understanding and optimizing neural network execution time on mobile
and embedded devices. In Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems, pages 278–291. ACM, 2018.

[49] S. Yao, Y. Zhao, A. Zhang, S. Hu, H. Shao, C. Zhang, L. Su, and T. Abdelzaher.
Deep learning for the internet of things. Computer, 51(5):32–41, 2018.

[50] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher. Deepiot: Compressing
deep neural network structures for sensing systems with a compressor-critic
framework. In Proceedings of the 15th ACM Conference on Embedded Network
Sensor Systems, page 4. ACM, 2017.

[51] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention generative
adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

[52] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang.
Accurate online power estimation and automatic battery behavior based power
model generation for smartphones. In Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis, pages
105–114, 2010.

	Abstract
	1 Introduction
	2 Motivation: System Performance
	3 Deep Compressive Offloading
	3.1 Compressive Sensing
	3.2 Deep Compressive Offloading
	3.3 Distilling Knowledge from Deep Learning Service
	3.4 Offloading-Supporting Components

	4 DeepCOD Design
	4.1 Offline Training & Deployment
	4.2 DeepCOD Runtime

	5 Implementation
	5.1 Hardware
	5.2 Software

	6 Evaluation
	6.1 Applications & Datasets
	6.2 Baseline Systems
	6.3 Network Latency vs. Accuracy Loss
	6.4 DeepCOD: End-to-End Latency
	6.5 Energy Consumption
	6.6 Impact of Bandwidth & Background Traffic
	6.7 Training Overhead

	7 Conclusion
	Acknowledgments
	References

